4.8 Article

Motor learning with unstable neural representations

期刊

NEURON
卷 54, 期 4, 页码 653-666

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2007.04.030

关键词

-

向作者/读者索取更多资源

It is often assumed that learning takes place by changing an otherwise stable neural representation. To test this assumption, we studied changes in the directional tuning of primate motor cortical neurons during reaching movements performed in familiar and novel environments. During the familiar task, tuning curves exhibited slow random drift. During learning of the novel task, random drift was accompanied by systematic shifts of tuning curves. Our analysis suggests that motor learning is based on a surprisingly unstable neural representation. To explain these results, we propose that motor cortex is a redundant neural network, i.e., any single behavior can be realized by multiple configurations of synaptic strengths. We further hypothesize that synaptic modifications underlying learning contain a random component, which causes wandering among synaptic configurations with equivalent behaviors but different neural representations. We use a simple model to explore the implications of these assumptions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据