4.7 Article

Micromechanical modeling of stress transfer in carbon nanotube reinforced polymer composites

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2006.12.018

关键词

carbon nanotubes; polymer composites; continuum-base.d analysis; interfacial stress transfer; elasticity; molecular structural mechanics

向作者/读者索取更多资源

A micromechanics model is developed for assessing the interfacial shear stress transfer in carbon nanotube reinforced polymer (NRP) composites. The model employs three concentric cylinders, each of a different length, as the representative volume element (RVE). A capped, hollow nanotube is utilized as the innermost cylinder that is completely surrounded by a matrix cylinder, which is, in turn, embedded in a composite cylinder. The atomistic structure of the nanotube is incorporated in the model by determining the Young's modulus of the nanotube using the molecular structural mechanics approach. A continuum-based analysis is performed using the elasticity theory for the axisymmetric RVE problem to obtain an analytical solution for computing the average axial normal stress in the nanotube and the interfacial shear stress across the matrix/nanotube interface. Parametric studies are conducted to illustrate the applications of the present model. The numerical results indicate that using sufficiently long and large nanotubes and a small nanotube volume fraction improves the efficiency of stress transfer in NRP composites. The predictions made by the current model are in favorable agreement with existing analytical, experimental, and computational studies. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据