4.6 Article

Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 21, 页码 15578-15588

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M607434200

关键词

-

向作者/读者索取更多资源

Heparan sulfate (HS) plays critical roles in a variety of developmental, physiological, and pathogenic processes due to its ability to interact in a structure-dependent manner with numerous growth factors that participate in cellular signaling. The divergent structures of HS glycosaminoglycans are the result of the coordinate actions of several N- and O-sulfotransferases, C5-epimerase, and 6-O-endosulfatases. We have shown that 6-O-sulfation of the glucosamine residues in HS are catalyzed by the sulfotransferases HS6ST-1, -2, and -3. To determine the biological and physiological importance of HS6ST-1, we now describe the creation of transgenic mice that lack this sulfotransferase. Most of our HS6ST-1-null mice died between embryonic day 15.5 and the perinatal stage, and those mice that survived were considerably smaller than their wild-type littermates. Some of these HS6ST-1-null mice exhibited development abnormalities, and histochemical and molecular analyses of these mice revealed an similar to 50% reduction in the number of fetal microvessels in the labyrinthine zone of the placenta relative to that in the wild-type mice. Because we observed a modest reduction in VEGF-A mRNA and protein in the tissues of HS6ST-1-null mice, an HS-dependent defect in cytokine signaling probably contributes to increased embryonic lethality and decreased growth. Biochemical studies of the HS chains isolated from various organs of our HS6ST-1-null mice revealed a marked reduction of GlcNAc(6SO(4)) and HexA-GlcNSO(3)(6SO(4)) levels and a reduced ability to bind Wnt2. Thus, despite the presence of three closely related 6-O-sulfotransferase genes in the mouse genome, HS6ST-1 is the primary one used in HS biosynthesis in most tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据