4.7 Article

Molecular underpinnings of the mechanical reinforcement in polymer nanocomposites

期刊

MACROMOLECULES
卷 40, 期 11, 页码 4059-4067

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma070512z

关键词

-

向作者/读者索取更多资源

Equilibrium molecular dynamics simulations on amorphous polymers filled with solid nanoparticles show that mechanical reinforcement results from the formation of a long-lived transient polymer-particle network only over a narrow range of parameter space. In these cases it is necessary that (i) the interfacial zone occupy significantly less volume than the bulk region and (ii) particle-polymer interactions must be strong enough that the relaxation time for the small fraction of adsorbed monomers is much longer than that characterizing the neat polymer. In all other cases, reinforcement will appear to be particle driven since there is no clear demarcation between the adsorbed segments and the bulk polymer. However, the apparent size of the particle will be larger because of the adsorbed segments. Both reinforcement mechanisms occur for systems that do not easily equilibrate, leading us to stress the importance of starting states and processing history which is reminiscent of glassy systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据