4.8 Article

Counting the monomers in nanometer-sized oligomers by pulsed electron -: Electron double resonance

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 21, 页码 6736-6745

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja065787t

关键词

-

向作者/读者索取更多资源

In a lot of cases active biomolecules are complexes of higher order, thus methods capable of counting the number of building blocks and elucidating their geometric arrangement are needed. Therefore, we experimentally validate here spin-counting via 4-pulse electron-electron double resonance (PELDOR) on well-defined test samples. Two biradicals, a symmetric and an asymmetric triradical, and a tetraradical were synthesized in a convergent reaction scheme via palladium-catalyzed cross-coupling reactions. PELDOR was then used to obtain geometric information and the number of spin centers per molecule in a single experiment. The measurement yielded the expected distances (2.2-3.8 nm) and showed that different spin-spin distances in one molecule can be resolved even if the difference amounts to only 5 A. The number of spins n has been determined to be 2.1 in both biradicals, to 3.1 and 3.0 in the symmetric and asymmetric triradicals, respectively, and to 3.9 in the tetraradical. The overall error of PELDOR spin-counting was found to be 5% for up to four spins. Thus, this method is a valuable tool to determine the number of constituting spin-bearing monomers in biologically relevant homo- and heterooligomers and how their oligomerization state and geometric arrangement changes during function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据