4.7 Article

Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2006.12.003

关键词

flavonoids; erythrocyte membranes; membrane proteins; inhibition of lipid peroxidation and hemolysis; absorption and fluorescence spectroscopy; FRET; fluorescence anisotropy

向作者/读者索取更多资源

Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of free radical mediated diseases. Hence their interactions with cell membranes, which generally serve as targets for lipid peroxidation, are of enormous interest. Here we report in vitro studies, via absorption and fluorescence spectroscopy, on the effects of several flavonoids (namely fisetin, quercetin, chrysin, morin, and 3-hydroxyflavone, 3-HF) in goat RBC membranes. Owing to the presence of functionally relevant membrane protein components embedded in the lipid bilayer RBC ghosts provide a more realistic system for exploring drug actions in biomembranes than simpler membrane models like phosphatidylcholine liposomes used in our previous studies [e.g. B. Sengupta, A. Banerjee, P.K. Sengupta, FEBS Lett. 570 (2004) 77-81]. Here, we demonstrate that binding of the flavonoids to the RBC membranes significantly inhibits lipid peroxidation, and at the same time enhances their integrity against hypotonic lysis. Interestingly, the antioxidant and antihemolytic activities are found to be crucially dependent on the locations of the flavonoids in the membrane matrix as revealed by fluorescence studies. Furthermore, we observe that FRET (from membrane protein tryptophans to flavonoids) occurs with significant efficiency indicating that the flavonoid binding sites lie in close proximity to the tryptophan residues in the ghost membrane proteins. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据