4.7 Article

Four thiol peroxidases contain a conserved GCT catalytic motif and act as a versatile array of lipid peroxidases in Anabaena sp PCC7120

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 42, 期 11, 页码 1736-1748

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2007.03.003

关键词

Anabaena sp.; cyanobacteria; thiol peroxidase; peroxiredoxin; lipid peroxidase; oxidative stress; antioxidant; free radicals

向作者/读者索取更多资源

The Anabaena sp. (ANASP) genome contains seven open reading frames with homology to thiol peroxidase (TPx), also known as peroxiredoxin (Prx). Based on sequence similarities among putative TPx's derived from various cyanobacteria genomes, we designated the seven putative TPx members as VCP, VCT, TCS, and GCT clusters according to the sequence of their conserved catalytic motif The GCT cluster consists of four members, named GCT1, GCT2, GCT3, and GCT4. The ANASP GCT-TPx genes were recombinantly expressed in Escherichia coli. The purified proteins were characterized with an emphasis on the ability to destroy various peroxides, the electron donor, and the conserved cysteine structure as a catalytic intermediate. All GCT members, as an atypical 2-Cys TPx family, exerted the highest peroxidase activity toward a lipid hydroperoxide using an electron from thioredoxin. Periplasmic protein analysis revealed that GCT2 and GCT4 are distributed in the cytoplasm, whereas GCT1 and GCT3, homologues of E. coli bacterioferritin comigratory protein/plant PrxQ, are localized in the periplasmic space. Immunoblots of the heterocystic proteins showed that the level of GCT2 in the heterocyst is comparable to that in the vegetative cell, whereas the other GCT members were not significantly detected in the heterocyst. The transcriptional responses of ANASP GCT genes to various oxidative stresses and growth environments were multifarious. Their intrinsic differences in transcriptional responsiveness and cellular localization suggest that this large GCT cluster is designed as an adaptive strategy to efficiently combat lipid hydroperoxide in Anabaena sp. that perform oxygenic photosynthesis and N-2 fixation. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据