4.2 Article

Ontogeny of skeletal maturation in the juvenile rat

出版社

WILEY-LISS
DOI: 10.1002/ar.20650

关键词

skeletal maturation; DXA; endochondral mineralization; endochondral elongation; osteocalcin; TRAP5b; bone density

资金

  1. NCI NIH HHS [R01 CA 83892] Funding Source: Medline

向作者/读者索取更多资源

Systemic regulation of the cellular processes that produce endochondral elongation and endochondral mineralization during postnatal skeletal maturation are not completely understood. In particular, a mechanism coupling the decline of cellular activity in the bone microenvironment to the onset of sexual maturity remains elusive. The purpose of this study was to empirically integrate the dynamic progression of bone mineral accrual and endochondral elongation as a function of animal age in growing male and female Sprague-Dawley rats. We used serial dual-energy X-ray absorptiometry (DXA) and radiography to study the temporal progression of bone growth and mineral accrual from weaning to adulthood. We observed that skeletal maturation proceeds in a pattern adequately described by the Gompertz function. During this period of growth, we found that serum markers of osteoblastic bone formation declined with age, while osteoclastic bone resorption activity remained unchanged. We also report a slight lag in the age at inflection in the rate of bone mineral accrual relative to the rate of tibial elongation and that both endochondral processes eventually come to asymptotic equilibrium by approximately 20 weeks of age. In addition, we studied tibial growth plate histomorphometry at select time points through 1 year of age. We report that, despite the histologic persistence of physeal cartilage, very little proliferative or elongative activity was measured in this tissue beyond 20 weeks of age. Taken together, these data provide insight to the temporal coordination of postnatal endochondral growth processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据