4.8 Article

Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer

期刊

JOURNAL OF POWER SOURCES
卷 168, 期 2, 页码 418-425

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2007.03.036

关键词

fuel cell; bipolar plate; laminate; wet-lay composite; graphite composite

向作者/读者索取更多资源

In this paper a method with the potential to lead to the rapid production of thermoplastic polymer composite bipolar plates with improved mechanical properties, formability, and half-cell resistance is described. In our previous work it was reported that laminate structure composite bipolar plates made with a polyphenylene sulfide (PPS) based wet-lay material as the core and a polyvinylidene fluoride (PVDF)/graphite mixture as the laminate exhibited improved formability, through-plane conductivity, and half-cell resistance over that of wet-lay based bipolar plates. However, the mechanical strength of the laminate plates needed improvement. In this work laminate polymer composite plates consisting of a PPS/graphite-based laminate mixture and a PPS based wet-lay core are manufactured in an effort to improve mechanical strength. Additionally, our existing channel design has been altered to reduce the channel depth from 0.8 to 0.5 mm in an effort to improve the half-cell resistance by reducing the total plate thickness. The plates are characterized by their half-cell resistance and mechanical properties at ambient and elevated temperatures. The PPS based laminate plates exhibited half-cell resistances as low as 0.018 ohm cm(2), tensile strength of up to 37 MPa, and flexural strength of up to 60 MPa at ambient temperature. The laminate bipolar plates can be manufactured in several ways with two of them being discussed in detail in the paper. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据