4.6 Article Proceedings Paper

Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter

期刊

PHYSICA D-NONLINEAR PHENOMENA
卷 230, 期 1-2, 页码 99-111

出版社

ELSEVIER
DOI: 10.1016/j.physd.2006.02.011

关键词

data assimilation; ensemble filters; sampling error; localization

向作者/读者索取更多资源

Good performance with small ensemble filters applied to models with many state variables may require 'localizing' the impact of an observation to state variables that are 'close' to the observation. As a step in developing nearly generic ensemble filter assimilation systems, a method to estimate 'localization' functions is presented. Localization is viewed as a means to ameliorate sampling error when small ensembles are used to sample the statistical relation between an observation and a state variable. The impact of spurious sample correlations between an observation and model state variables is estimated using a 'hierarchical ensemble filter', where an ensemble of ensemble filters is used to detect sampling error. Hierarchical filters can adapt to a wide array of ensemble sizes and observational error characteristics with only limited heuristic tuning. Hierarchical filters can allow observations to efficiently impact state variables, even when the notion of 'distance' between the observation and the state variables cannot be easily defined. For instance, defining the distance between an observation of radar reflectivity from a particular radar and beam angle taken at 1133 GMT and a model temperature variable at 700 hPa 60 km north of the radar beam at 1200 GMT is challenging. The hierarchical filter estimates sampling error from a 'group' of ensembles and computes a factor between 0 and 1 to minimize. sampling error. An a priori notion of distance is not required. Results are shown in both a low-order model and a simple atmospheric GCM. For low-order models, the hierarchical filter produces 'localization' functions that are very similar to those already described in the literature. When observations are more complex or taken at different times from the state specification (in ensemble smoothers for instance), the localization functions become increasingly distinct from those used previously. In the GCM, this complexity reaches a level that suggests that it would be difficult to define efficient localization functions a priori. There is a cost trade-off between running hierarchical filters or running a traditional filter with larger ensemble size. Hierarchical filters can be run for short training periods to develop localization statistics that can be used in a traditional ensemble filter to produce high quality assimilations at reasonable cost, even when the relation between observations and state variables is not well-known a priori. Additional research is needed to determine if it is ever cost-efficient to run hierarchical filters for large data assimilation problems instead of traditional filters with the corresponding total number of ensemble members. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据