4.1 Article

Stem cells and the planarian schmidtea mediterranea

期刊

COMPTES RENDUS BIOLOGIES
卷 330, 期 6-7, 页码 498-503

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.crvi.2007.05.005

关键词

regeneration; stem cells; planarians

类别

资金

  1. NIGMS NIH HHS [R0-1 GM57260, R01 GM057260, R01 GM057260-10] Funding Source: Medline

向作者/读者索取更多资源

In recent years, stem cells have been heralded as potential therapeutic agents to address a large number of degenerative diseases. Yet, in order to rationally utilize these cells as effective therapeutic agents, and/or improve treatment of stem-cell-associated malignancies such as leukemias and carcinomas, a better understanding of the basic biological properties of stem cells needs to be acquired. A major limitation in the study of stem cells lies in the difficulty of accessing and studying these cells in vivo. This barrier is further compounded by the limitations of in vitro culture systems, which are unable to emulate the microenvironments in which stem cells reside and which are known to provide critical regulatory signals for their proliferation and differentiation. Given the complexity of vertebrate embryonic and adult stem cell populations and their relative inaccessibility to in vivo molecular analyses, the study of stem cells should benefit from analyzing their counterparts in simpler model organisms. In the past, the use of Drosophila or C. elegans has provided invaluable contributions to our understanding of genes and pathways involved in a variety of human diseases. However, stem cells in these organisms are mostly restricted to the gonads, and more importantly neither Drosophila, nor C. elegans are capable of regenerating body parts lost to injury. Therefore, a simple animal with experimentally accessible stem cells playing a role in tissue maintenance and/or regeneration should be very useful in identifying and functionally testing the mechanisms regulating stem cell activities. The planarian Schmidtea mediterranea is poised to fill this experimental gap. S. mediterranea displays robust regenerative properties driven by a stem cell population capable of producing the similar to 40 different cell types found in this organism, including the germ cells. Given that all known metazoans depend on stem cells for their survival, it is extremely likely that the molecular events regulating stem cell biology would have been conserved throughout evolution, and that the knowledge derived from studying planarian stem cells could be vertically integrated to the study of vertebrate stem cells. Current efforts, therefore, are aimed at further characterizing the population of planarian stem cells in order to define its suitability as a model system in which to mechanistically dissect the basic biological attributes of metazoans stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据