4.5 Article Proceedings Paper

Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO2 budgets

期刊

JOURNAL OF MARINE SYSTEMS
卷 66, 期 1-4, 页码 195-203

出版社

ELSEVIER
DOI: 10.1016/j.jmarsys.2006.01.012

关键词

air-water exchanges; gas exchange; carbon dioxide; remote sensing; altimetry

资金

  1. Natural Environment Research Council [soc010007] Funding Source: researchfish
  2. NERC [soc010007] Funding Source: UKRI

向作者/读者索取更多资源

One of the dominant sources of uncertainty in the calculation of air-sea flux of carbon dioxide on a global scale originates from the various parameterizations of the gas transfer velocity, k, that are in use. Whilst it is undisputed that most of these pararneterizations have shortcomings and neglect processes which influence air-sea gas exchange and do not scale with wind speed alone, there is no general agreement about their relative accuracy. The most widely used parameterizations are based on non-linear functions of wind speed and, to a lesser extent, on sea surface temperature and salinity. Processes such as surface film damping and whitecapping are known to have an effect on air-sea exchange. More recently published pararneterizations use friction velocity, sea surface roughness, and significant wave height. These new parameters can account to some extent for processes such as film damping and whitecapping and could potentially explain the spread of wind-speed based transfer velocities published in the literature. We combine some of the principles of two recently published k pararneterizations [Glover, D.M., Frew, N.M., McCue, S.J. and Bock, E.J., 2002. A multiyear time series of global gas transfer velocity from the TOPEX dual frequency, normalized radar backscatter algorithm. In: Donelan, M.A., Drennan, W.M., Saltzman, E.S., and Warminkhof, R. (Eds.), Gas Transfer at Water Surfaces, Geophys. Monograph 127. AGU,Washington, DC, 325-331; Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 5713: 87-94] to calculate k as the sum of a linear function of total mean square slope of the sea surface and a wave breaking parameter. This separates contributions from direct and bubble-mediated gas transfer as suggested by Woolf [Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 5713: 87-94] and allows us to quantify contributions from these two processes independently. We then apply our parameterization to a monthly TOPEX altimeter gridded 1.5 degrees x 1.5 degrees data set and compare our results to transfer velocities calculated using the popular wind-based k parameterizations by Wanninkhof [Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97: 7373-7382.] and Warminkhof and McGillis [Warminkhof R. and McGillis, W., 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett., 26(13): 1889-1892]. We show that despite good agreement of the globally averaged transfer velocities, global and regional fluxes differ by up to 100%. These discrepancies are a result of different spatio-temporal distributions of the processes involved in the parameterizations of k, indicating the importance of wave field parameters and a need for further validation. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据