4.7 Article

Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis

期刊

PHYSICAL REVIEW D
卷 75, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.75.123007

关键词

-

向作者/读者索取更多资源

The abnormally weighting energy hypothesis consists of assuming that the dark sector of cosmology violates the weak equivalence principle (WEP) on cosmological scales, which implies a violation of the strong equivalence principle for ordinary matter. In this paper, dark energy is shown to result from the violation of WEP by pressureless (dark) matter. This allows us to build a new cosmological framework in which general relativity is satisfied at low scales, as WEP violation depends on the ratio of the ordinary matter over dark matter densities, but at large scales, we obtain a general relativity-like theory with a different value of the gravitational coupling. This explanation is formulated in terms of a tensor-scalar theory of gravitation without WEP for which there exists a revisited convergence mechanism toward general relativity. The consequent dark energy mechanism build upon the anomalous gravity of dark matter (i) does not require any violation of the strong energy condition p <-rho c(2)/3, (ii) offers a natural way out of the coincidence problem thanks to the nonminimal couplings to gravitation, (iii) accounts fairly for supernovae data from various simple couplings and with density parameters very close to the ones of the concordance model Lambda CDM, and therefore suggests an explanation to its remarkable adequacy. Finally, (iv) this mechanism ends up in the future with an Einstein-de Sitter expansion regime once the attractor is reached.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据