4.5 Article

Genome-wide dynamics of SAPHIRE, an essential complex for gene activation and chromatin boundaries

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 27, 期 11, 页码 4058-4069

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.02044-06

关键词

-

资金

  1. Cancer Research UK [A6517] Funding Source: Medline
  2. Wellcome Trust [077118] Funding Source: Medline

向作者/读者索取更多资源

In this study, we characterize a four-protein nucleosome-binding complex from Schizosaccharomyces pombe, termed SAPHIRE, that includes two orthologs of human Lsd1, a histone demethylase. The SAPHIRE complex is essential for cell viability, whereas saphire mutants lacking key conserved catalytic residues are viable but thermosensitive, suggesting that SAPHIRE has both an important enzymatic function and an essential nonenzymatic function. SAPHIRE is present in (or adjacent to) particular heterochromatic loci and also in the transcription start site regions of many highly active polymerase 11 genes. However, ribosomal protein genes are notably SAPHIRE deficient. SAPHIRE promotes activation, as target genes are selectively attenuated in saphire mutants. Interestingly, saphire mutants display increased histone H3 lysine 4 dimethylation, a modification typically associated with euchromatin. SAPHIRE localization is dynamic, as activated genes rapidly acquire SAPHIRE. Furthermore, saphire mutants dramatically shift a heterochromatin-euchromatin boundary in Chr1, suggesting a novel role in boundary regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据