4.5 Article

Effect of the cellulose-binding domain on the catalytic activity of a β-glucosidase from Saccharomycopsis fibuligera

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-007-0213-9

关键词

cellulose-binding domain; cellulose hydrolysis; beta-glucosidase; BGL1; Saccharomycopsis fibuligera; Saccharomyces cerevisiae

向作者/读者索取更多资源

Enzyme engineering was performed to link the beta-glucosidase enzyme (BGL1) from Saccharomycopsis fibuligera to the cellulose-binding domain (CBD2) of Trichoderma reesei cellobiohydrolase (CBHII) to investigate the effect of a fungal CBD on the enzymatic characteristics of this non-cellulolytic yeast enzyme. Recombinant enzymes were constructed with single and double copies of CBD2 fused at the N-terminus of BGL1 to mimic the two-domain organization displayed by cellulolytic enzymes in nature. The engineered S. fibuligera beta-glucosidases were expressed in Saccharomyces cerevisiae under the control of phosphoglycerate-kinase-1 promoter (PGK1 (P) ) and terminator (PGK1 (T) ) and yeast mating pheromone alpha-factor secretion signal (MF alpha 1 (S) ). The secreted enzymes were purified and characterized using a range of cellulosic and non-cellulosic substrates to illustrate the effect of the CBD on their enzymatic activity. The results indicated that the recombinant enzymes of BGL1 displayed a 2-4-fold increase in their hydrolytic activity toward cellulosic substrates like avicel, amorphous cellulose, bacterial microcrystalline cellulose, and carboxy methyl cellulose in comparison with the native enzyme. The organization of the CBD in these recombinant enzymes also resulted in enhanced substrate affinity, molecular flexibility and synergistic activity, thereby improving the ability of the enzymes to act on and hydrolyze cellulosic substrates, as characterized by adsorption, kinetics, thermal stability, and scanning electron microscopic analyses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据