4.6 Article Proceedings Paper

Lipopolysaccharide preconditioning induces robust protection against brain injury resulting from deep hypothermic circulatory arrest

期刊

JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY
卷 133, 期 6, 页码 1588-1596

出版社

MOSBY-ELSEVIER
DOI: 10.1016/j.jtcvs.2006.12.056

关键词

-

向作者/读者索取更多资源

Objective: Delayed preconditioning genetically reprograms the response to ischemic injury. Subclinical bacterial lipopolysaccharide acts through preconditioning, powerfully protecting against experimental stroke. We investigated the potential for lipopolysaccharide to protect against brain injury related to cardiopulmonary bypass. Methods: Neonatal piglets were blindly polysaccharide (n = 6) or saline (n = 6). Three days later, they experienced 2 hours of deep hypothermic circulatory arrest before being weaned and supported anesthetized for 20 hours in an intensive care setting. Controls included cardiopulmonary bypass without deep hypothermic circulatory arrest (n =3) and no cardiopulmonary (n = 3). Brain injury was quantified by light and flourescent microscopy (Fluoro-Jade; Histo-Chem, Inc, Jefferson, Ark). Results: All animals were clinically indistinguishable before surgery. Perioperative and postoperative parameters between experimental groups were similar. No control animal scored falsely positive. Histologic scores were 0.33 +/- 0.21, 0.66 +/- 0.42, and 0.5 +/- 0.24 in the cortex, basal ganglia, and hippocampus, respectively, in the lipopolysaccharide-treated animals but significantly worse in all saline control animals (1.33 +/- 0.21, P < .01; 1.66 +/- 0.33, P = .09; and 6.0 +/- 1.5, P < .01). One lipopolysaccharide-treated brain was histologically indistinguishable from controls. Conclusions: This is the first evidence that lipopolysaccharide can precondition against cardiopulmonary bypass-related injury. Because lipopolysaccharide preconditioning is a systemic phenomenon offering proven protection against myocardiasl, hepatic, and pulmonary injury, this technique offers enormous potential for protecting against systemic neonatal injury related to cardiopulmonary bypass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据