4.7 Article

Evaluating population persistence of Delmarva fox squirrels and potential impacts of climate change

期刊

BIOLOGICAL CONSERVATION
卷 137, 期 1, 页码 70-77

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biocon.2007.01.015

关键词

extinction risk; environmental autocorrelation; persistence; climate change; endangered species

向作者/读者索取更多资源

In addition to the combined effects of forest fragmentation, habitat loss, and population isolation on the long-term persistence of many species including the endangered Delmarva fox squirrel (Sciurus niger cinereus), future changes in climate may make existing habitats less productive and more variable. The Palmer Drought Severity Index (PDSI) for the Delmarva Peninsula of the mid-Atlantic USA, reveals a trend for longer durations of potentially unfavorable conditions for fox squirrel population growth. We used a stochastic population matrix model and available life history information to assess population extinction risk for the Delmarva fox squirrel under a number of scenarios of landscape change and environmental variation, including uncertainties in the future range of climate patterns. Patch size (carrying capacity) was the most important factor influencing persistence of isolated populations. Extinction risk increased markedly across all patch sizes when year to year patterns in environmental variability were autocorrelated to match regional patterns in the PDSI. Increased autocorrelation matching the regional PSDI increased extinction risk, ranging from a factor of 5 to a factor of over 100 in some scenarios when compared to uncorrelated patterns in environmental variability. Increasing the range of variation in survival probabilities was less important to persistence, but its effect also increased when year-to-year changes were autocorrelated in time. Comparing model results with the size and landscape configuration of currently occupied patches on the Delmarva Peninsula showed that many existing populations are above the size threshold identified by these simulations for long-term persistence under current conditions, but these may become vulnerable should climate variability increase and adverse conditions persist for several years at a time. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据