4.5 Article

Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis

期刊

出版社

SPRINGER
DOI: 10.1007/s11274-006-9311-5

关键词

gamma-aminobutyric acid; glutamate decarboxylase; immobilization; optimization; packed bed reactor

向作者/读者索取更多资源

On an industrial scale, the production of gamma-aminobutyric acid (GABA) from the cheaper sodium L-glutamate (L-MSG) is a valuable process. By entrapping Lactobacillus brevis cells with higher glutamate decarboxylase (GAD) activity into Ca-alginate gel beads, the biotransformation conditions of L-MSG to GABA were optimized with the immobilized cells. The cells obtained from a 60-h culture broth showed the highest biotransformation efficiency from L-MSG to GABA. The optimal cell density in gel beads, reaction pH and temperature were 11.2 g dry cell weight (DCW) 1(-1), 4.4 and 40 degrees C respectively. The thermal stability of immobilized cells was significantly higher than free cells. Under the optimized reaction conditions, the yield of GABA reached above 90% during the initial five batches and the yield still remained 56% in the tenth batch. Continuous production of GABA was realized with a higher yield by incorporating cell re-cultivation using the packed bed reactor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据