4.3 Article

Fluorescent iminodiacetamide derivatives as potential ionophores for optical zinc ion-selective sensors

期刊

ANALYTICAL SCIENCES
卷 24, 期 6, 页码 727-733

出版社

JAPAN SOC ANALYTICAL CHEMISTRY
DOI: 10.2116/analsci.24.727

关键词

-

向作者/读者索取更多资源

Fluorescent sensor molecules were synthesized by conjugation of iminodiacetamide derivatives with fluorescent moieties of different structures and their UV-visible and fluorescent properties were characterized in acetonitrile solvent. The fluorescent measurements revealed that the N-(2-naphthyl) and N-phenyl derivatives exhibit a distinct zinc ion-selectivity over alkali and alkaline earth metal ions, while N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives do not possess any ion-selectivities. In contrast to the fluorescent measurements, all ligands show Zn2+ selectivity over Ca2+ and Mg2+ ions in plasticized PVC membranes using potentiometric signal transduction. This observation found for N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives can be ascribed to the more hindered interaction between the signalling group of the ionophore and the central metal ion in PVC membranes than in acetonitrile solution upon complexation. From the fluorescent measurements it can also be concluded that the ligands with metal ions form complexes mainly with 2:1 stoichiometry (L2M). On complex formation a considerable decrease in the fluorescent intensity was observed for all ligands except the N-(anthrylmethyl) derivative, where a 25 - 30 fold fluorescence enhancement was found, which is explained by the photoinduced electron transfer (PET) mechanism. All ionophores exhibited serious hydrogen ion interference, therefore complexation-induced spectral changes were measured in aprotic acetonitrile solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据