4.5 Article

Ketone bodies are protective against oxidative stress in neocortical neurons

期刊

JOURNAL OF NEUROCHEMISTRY
卷 101, 期 5, 页码 1316-1326

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1471-4159.2007.04483.x

关键词

ketone bodies; mitochondria; mitochondrial permeability transition; neocortex; oxidative stress

资金

  1. NINDS NIH HHS [NS044846, NS046426, NS048101] Funding Source: Medline

向作者/读者索取更多资源

Ketone bodies (KB) have been shown to prevent neurodegeneration in models of Parkinson's and Alzheimer's diseases, but the mechanisms underlying these effects remain unclear. One possibility is that KB may exert antioxidant activity. In the current study, we explored the effects of KB on rat neocortical neurons exposed to hydrogen peroxide (H2O2) or diamide - a thiol oxidant and activator of mitochondrial permeability transition (mPT). We found that: (i) KB completely blocked large inward currents induced by either H2O2 or diamide; (ii) KB significantly decreased the number of propidium iodide-labeled cells in neocortical slices after exposure to H2O2 or diamide; (iii) KB significantly decreased reactive oxygen species (ROS) levels in dissociated neurons and in isolated neocortical mitochondria; (iv) the electrophysiological effects of KB in neurons exposed to H2O2 or diamide were mimicked by bongkrekic acid and cyclosporin A, known inhibitors of mPT, as well as by catalase and DL - dithiothreitol, known antioxidants; (v) diamide alone did not significantly alter basal ROS levels in neurons, supporting previous studies indicating that diamide-induced neuronal injury may be mediated by mPT opening; and (vi) KB significantly increased the threshold for calcium-induced mPT in isolated mitochondria. Taken together, our data suggest that KB may prevent mPT and oxidative injury in neocortical neurons, most likely by decreasing mitochondrial ROS production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据