4.2 Article

Doping-dependent evolution of low-energy excitations and quantum phase transitions within an effective model for high-Tc copper oxides

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 57, 期 3, 页码 271-278

出版社

SPRINGER
DOI: 10.1140/epjb/e2007-00179-2

关键词

-

向作者/读者索取更多资源

In this paper a mean-field theory for the spin-liquid paramagnetic non-superconducting phase of the p- and n-type high-T-c cuprates is developed. This theory applied to the effective t-t'-t ''-J* model with the ab initio calculated parameters and with the three-site correlated hoppings. The static spin-spin and kinematic correlation functions beyond Hubbard-I approximation are calculated self-consistently. The evolution of the Fermi surface and band dispersion is obtained for the wide range of doping concentrations x. For p-type systems the three different types of behavior are found and the transitions between these types are accompanied by the changes in the Fermi surface topology. Thus a quantum phase transitions take place at x = 0.15 and at x = 0.23.Due to the different Fermi surface topology we found for n-type cuprates only one quantum critical concentration, x = 0.2. The calculated doping dependence of the nodal Fermi velocity and the effective mass are in good agreement with the experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据