4.7 Article

Structure and luminosity of neutrino-cooled accretion disks

期刊

ASTROPHYSICAL JOURNAL
卷 661, 期 2, 页码 1025-1033

出版社

IOP PUBLISHING LTD
DOI: 10.1086/513689

关键词

accretion, accretion disks; black hole physics; gamma rays : bursts; neutrinos

向作者/读者索取更多资源

Neutrino-cooled hyperaccretion disks around stellar-mass black holes are plausible candidates for the central engines of gamma-ray bursts. We calculate the one-dimensional structure and the annihilation luminosity of such disks. The neutrino optical depth is of crucial importance in determining the neutrino cooling rate and is in turn dependent on the electron fraction, the free nucleon fraction, and the electron degeneracy, for a given density and temperature of the disk matter. We construct a bridging formula for the electron fraction that works for various neutrino optical depths and give exact definitions for the free proton fraction and free neutron fraction. We show that the electron degeneracy has important effects, in the sense that it increases the absorption optical depth for neutrinos and, along with the neutronization processes favored by high temperature, causes the electron fraction to drop below 0.1 in the inner region of the disk. The resulting neutrino annihilation luminosity is considerably reduced in comparison with that obtained in previous works in which the electron degeneracy was not considered and the electron fraction was simply taken to be 0.5, but it is still likely to be adequate for gamma-ray bursts, and it is ejected mainly from the inner region of the disk with an anisotropic distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据