4.1 Article

Shear-stress dependence of dinoflagellate bioluminescence

期刊

BIOLOGICAL BULLETIN
卷 212, 期 3, 页码 242-249

出版社

UNIV CHICAGO PRESS
DOI: 10.2307/25066606

关键词

-

向作者/读者索取更多资源

Fluid flow stimulates bioluminescence in dinoflagellates. However, many aspects of the cellular mechanotransduction are incompletely known. The objective of our study was to formally test the hypothesis that flow-stimulated dinoflagellate bioluminescence is dependent on shear stress, signifying that organisms are responding to the applied fluid force. The dinoflagellate Lingulodinium polyedrum was exposed to steady shear using simple Couette flow in which fluid viscosity was manipulated to alter shear stress. At a constant shear rate, a higher shear stress due to increased viscosity increased both bioluminescence intensity and decay rate, supporting our hypothesis that bioluminescence is shear-stress dependent. Although the flow response of non-marine attached cells is known to be mediated through shear stress, our results indicate that suspended cells such as dinoflagellates also sense and respond to shear stress. Shear-stress dependence of flowstimulated bioluminescence in dinoflagellates is consistent with mechanical stimulation due to direct predator handling in the context of predator-prey interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据