4.6 Article Proceedings Paper

Fast estimation of connectivity in fractured reservoirs using percolation theory

期刊

SPE JOURNAL
卷 12, 期 2, 页码 167-178

出版社

SOC PETROLEUM ENG
DOI: 10.2118/94186-PA

关键词

-

向作者/读者索取更多资源

Investigating the impact of geological uncertainty (i.e., spatial distribution of fractures) on reservoir performance may aid management decisions. The conventional approach to address this is to build a number of possible reservoir models, upscale them, and then run flow simulations. The problem with this approach is that it is computationally very expensive. In this study, we use another approach based on the permeability contrasts that control the flow, called percolation approach. This assumes that the permeability disorder of a rock can be simplified to either permeable or impermeable. The advantage is that by using some universal laws from percolation theory, the effect of the complex geometry which influences the global properties (e.g., connectivity or conductivity) can be easily estimated in a fraction of a second on a spreadsheet. The aim of this contribution is to establish the percolation framework to examine the connectivity of fracture systems at a given finite observation scale in 2D and 3D. In particular, we use numerical simulation to show how the scaling laws of the connectivity derived originally for constant-length isotropic systems can be expanded to cover more realistic cases including fracture systems with anisotropy and fracture-length distribution. Finally, the outcrop data of mineralized fractures exposed on the southern margin of the Bristol Channel Basin was used to show that the predictions from the percolation approach are in agreement with the results calculated from field data but can be obtained very quickly. As a result, this may be used for practical engineering purposes for decision making.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据