4.7 Article

Phase transition in liquid drop fragmentation

期刊

PHYSICAL REVIEW E
卷 75, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.061127

关键词

-

向作者/读者索取更多资源

A liquid droplet is fragmented by a sudden pressurized-gas blow, and the resulting droplets, adhered to the window of a flatbed scanner, are counted and sized by computerized means. The use of a scanner plus image recognition software enables us to automatically count and size up to tens of thousands of tiny droplets with a smallest detectable volume of approximately 0.02 nl. Upon varying the gas pressure, a critical value is found where the size distribution becomes a pure power law, a fact that is indicative of a phase transition. Away from this transition, the resulting size distributions are well described by Fisher's model at coexistence. It is found that the sign of the surface correction term changes sign, and the apparent power-law exponent tau has a steep minimum, at criticality, as previously reported in nuclear multifragmentation studies. We argue that the observed transition is not percolative, and introduce the concept of dominance in order to characterize it. The dominance probability is found to go to zero sharply at the transition. Simple arguments suggest that the correlation length exponent is nu = 1/2. The sizes of the largest and average fragments, on the other hand, do not go to zero abruptly but behave in a way that appears to be consistent with recent predictions of Ashurst and Holian.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据