4.5 Article

Synthesis and properties of cyclic acetal biomaterials

期刊

出版社

WILEY-LISS
DOI: 10.1002/jbm.a.31104

关键词

biomaterials; cyclic acetal; scaffolds; osteoprogenitor cells

向作者/读者索取更多资源

There is an increasing need to develop new biomaterials as tissue engineering scaffolds. Unfortunately, many of the materials that have been studied for these purposes are polyesters that hydrolytically degrade into acidic products, which may harm the surrounding tissue, and lead to accelerated degradation of the biomaterial. To overcome this disadvantage, a novel class of biomaterials based on a cyclic acetal unit has been created. Specifically, materials based upon the monomer 5-ethyl-5-(hydroxymethyl)-beta, beta-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD) is examined. This study investigates the effects of fabrication parameters, including initiator content, volume of diluent, and volume of accelerant, on several properties of EHD networks. Twelve different formulations were fabricated by varying the three parameters in a factorial design. The effects of the fabrication parameters on properties of the EHD networks were examined. Results show that the volume of accelerant most affected the EHD network gelation time, while the volume of diluent most affected the maximum reaction temperature, sol fraction, and degree of swelling. Cell viability on the EHD networks varied between (18 +/- 6)% and (57 10)% of the control at 4 h, and between (36 +/- 14)% and (140 +/- 50)% of the control at 8 h. These results indicate that it is possible to control the properties of the EHD networks by varying the fabrication parameters, and that EHD networks support a viable cell population. (C) 2006 Wiley Periodicals, Inc. J Biomed Mater Res SIA: 594-602, 2007.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据