4.5 Article

RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1

期刊

JOURNAL OF CELL SCIENCE
卷 120, 期 11, 页码 1868-1876

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.005306

关键词

basal bodies; cilia; airway epithelial cells; GTPase; mouse

向作者/读者索取更多资源

Programs that direct cellular differentiation are dependent on the strict temporal expression of regulatory factors that can be provided by Rho GTPases. Ciliogenesis is a complex sequence of events involving the generation and docking of basal bodies at the apical membrane, followed by ciliary axoneme generation. Although a cilia proteome has been assembled, programs that direct ciliated cell differentiation are not well established, particularly in mammalian systems. Using mouse primary culture airway epithelial cells, we identified a critical stage of ciliogenesis requiring the temporal establishment of an apical web-like structure of actin for basal body docking and subsequent axoneme growth. Apical web formation and basal body docking were prevented by interruption of actin remodeling and were dependent on RhoA activation. Additional evidence for this program was provided by analysis of Foxj1-null mice that failed to dock basal bodies and lacked apical actin. Foxj1 expression coincided with actin web formation, activated RhoA and RhoB, and persisted despite RhoA inhibition, suggesting that Foxj1 promoted RhoA during ciliogenesis. Apical ezrin localization was also dependent on Foxj1, actin remodeling, and RhoA, but was not critical for ciliogenesis. Thus, temporal Foxj1 and RhoA activity are essential regulatory events for cytoskeletal remodeling during mammalian ciliogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据