4.7 Article

Diversity of translation start sites may define increased complexity of the human short ORFeome

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 6, 期 6, 页码 1000-1006

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M600297-MCP200

关键词

-

向作者/读者索取更多资源

Our previous proteomics analysis of small proteins expressed in human K562 cells provided the first direct evidence of translation of upstream ORFs in human fulllength cDNAs (Oyama, M., Itagaki, C., Hata, H., Suzuki, Y., Izumi, T., Natsume, T., Isobe, T., and Sugano, S. (2004) Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. Genome Res. 14, 2048-2052). In the present study, we performed an in-depth proteomics analysis of human K562 and HEK293 cells using a two-dimensional nano-liquid chromatography-tandem mass spectrometry system. The results led to the identification of eight protein-coding regions besides 197 small proteins with a theoretical mass less than 20 kDa that were already annotated coding sequences in the curated mRNA database. In addition to the upstream ORFs in the presumed 5'-untranslated regions of mRNAs, bioinformatics analysis based on accumulated 5'- end cDNA sequence data provided evidence of novel short coding regions that were likely to be translated from the upstream non-AUG start site or from the new short transcript variants generated by utilization of downstream alternative promoters. Protein expression analysis of the GRINL1A gene revealed that translation from the most upstream start site occurred on the minor alternative splicing transcript, whereas this initiation site was not utilized on the major mRNA, resulting in translation of the downstream ORF from the second initiation codon. These findings reveal a novel post-transcriptional system that can augment the human proteome via the alternative use of diverse translation start sites coupled with transcriptional regulation through alternative promoters or splicing, leading to increased complexity of short protein-coding regions defined by the human transcriptome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据