3.8 Article

Temperature modulation of the superprism effect in photonic crystals composed of the copper oxide high-temperature superconductor

出版社

JAPAN SOC APPLIED PHYSICS
DOI: 10.1143/JJAP.46.L593

关键词

photonic crystal; superprism effect; superconductor; temperature modulation

向作者/读者索取更多资源

We have designed a two-dimensional triangular photonic crystal using a copper oxide high-temperature superconductor that can control the superprism effect. The refractive direction of light in the photonic crystal is determined by calculating the direction of the group velocity of the light in the photonic crystal. By tuning the temperature of the superconductor, the photonic band structure as well as the equifrequency surface is changed. When the incident angle is fixed, the refractive angle can be changed by varying the temperature. We choose an operation frequency of omega = 0.83(2 pi c/a) and a fixed incident angle of theta = 13 degrees for discussion. The refractive angle of light in the photonic crystal changes about 28 degrees when the temperature is increased from T = 5 to 101) K. All the equifrequency surfaces of the photonic crystal are calculated by the plane-wave expansion method. and simulations on the propagation of light are investigated by the finite-difference time-domain method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据