4.5 Article

Water vapour adsorption on lignin-based activated carbons

期刊

出版社

WILEY
DOI: 10.1002/jctb.1698

关键词

water vapour adsorption; lignin; CO2 gasification; chars; activated carbon; sodium

向作者/读者索取更多资源

Lignocellulosic wastes are interesting precursors for carbon products. The high amount of Na observed in kraft lignin makes it a promising precursor for the preparation of activated carbons for desiccant applications. Water adsorption capacity and kinetics of kraft lignin-based chars and activated carbons with different burn-off and inorganic matter content have been studied. CO2 partial gasification of lignin char develops a wide porous structure. An increase of the micropore volume can be observed at low to medium burn-offs. At degrees of higher activation the mesoporous structure develops. For very high burn-off the porous structure is destroyed by coalescence of the pores and reduction of the carbon material. The carbons obtained show atomic surface concentrations of sodium from 7.6-15.4%, as revealed by XPS analysis. Water vapour adsorption isotherms have been obtained in a thermogravimetric system and have been fitted by a DS model, which properly represents the experimental data. The kinetics of water vapour adsorption follows a linear driving force mass transfer (LDF) model. The presence of sodium and oxygen surface groups on the carbon surface enhances water vapour adsorption at low relative pressure. Activated carbon produced at 41% burn-off shows the highest water vapour adsorption at low relative pressures, as a consequence of the high sodium dispersion on its surface. The sodium dispersed over the carbon surface undergoes clustering as gasification proceeds, decreasing the number of active centres. For burn-off higher than 41%, this behaviour produces a decrease in the water adsorbed at low relative pressures. (c) 2007 Society of Chemical Industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据