4.6 Article

Gold nanoparticles/L-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor

期刊

ANALYTICAL METHODS
卷 2, 期 11, 页码 1692-1697

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ay00389a

关键词

-

资金

  1. National Natural Science Foundation of China [20901003, 21073001, 21005001]
  2. Natural Science Foundation of Anhui [KJ2009B013Z]
  3. Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical Engineering [OFCC0905]

向作者/读者索取更多资源

A novel immobilization strategy combining gold nanoparticles (GNP) with graphene (Gr) via crosslinker L-cysteine (L-cys) for the enhancement of a HRP-labelled sandwiched electrochemical immunosensor was developed. In the fabrication process of the immobilization platform, graphene was first modified onto glassy carbon electrode (GCE), and then L-cys was electrodeposited onto the substrate of Gr for the following GNP assembling. The characteristics of the platform surface were studied by scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, cyclic voltammetry (CV) and electrochemical alternating current impedance spectroscopy (EIS). From the SEM, interestingly we found the substrate of Gr induced the regular growth of L-cys, which may further improve the stable conjugation of GNP, which may result in more loading amount of the biomolecules. The special GNP/L-cys/Gr composite film constructed an effective antibody immobilization matrix and made the immunosensor hold high sensitivity, good stability and bioactivity. Under the optimized experimental conditions, a wide linear range of human IgG (HIgG) concentration from 0.2 to 320 ng mL(-1) and a detection limit of 70 ng mL(-1) were obtained. Accurate detection of HIgG in human serum samples was satisfyingly demonstrated by comparison to the standard ELISA assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据