4.5 Article

Characterization of biodegradable polyurethane microfibers for tissue engineering

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1163/156856207781034115

关键词

electrospinning; polyurethane (PU); biodegradable; extracellular matrix (ECM); scaffold; tissue engineering (TE)

资金

  1. NHLBI NIH HHS [HL64387] Funding Source: Medline

向作者/读者索取更多资源

A polyurethane designed to be biodegradable via hydrolysis and enzyme-mediated chain cleavage, has been investigated for its use as a temporary scaffold in tissue-engineering applications. The phase-segregated nature of the polyurethane imparts elastomeric properties that are attractive for soft tissue engineering. This polyurethane has been electrospun in order to create scaffolds that incorporate several biomimetic features including small fiber diameter, large void volume, and an interconnected porous network. Material properties were evaluated via gelpermeation chromatography, differential scanning calorimetry and Raman spectroscopy before and after processing. Analysis by gel-permeation chromatography showed that the molecular weights were similar, indicating that the bulk of the polymer chains were not degraded during processing. Thermal analysis revealed that the glass transition temperature did not shift and Raman spectra of the bulk polyurethane film compared to the electrospun mat were identical, confirming that the conformation of the polymer was unaffected by the shear and electric field used in the electrospinning process. In addition, field emission scanning electron microscopy revealed that the morphology of the electrospun mats had a broad fiber diameter distribution, and mechanical analysis showed that the mats had an ultimate tensile stress of 1.33 MPa and ultimate tensile strain of 78.6%. The degradation profile was investigated in the presence of chymotrypsin. These results were compared to a previous study of thin films of this polyurethane, and it was found that the increase of surface area aided the surface-mediated erosion of the material. It is believed that an electrospun matrix of this biodegradable polyurethane shows promise for use in soft tissue engineering and regenerative medicine applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据