4.6 Article

Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics

期刊

JOURNAL OF MATERIALS SCIENCE
卷 42, 期 11, 页码 3789-3799

出版社

SPRINGER
DOI: 10.1007/s10853-006-0413-0

关键词

-

向作者/读者索取更多资源

The incorporation of silica nanoparticles into polyethylene has been shown to increase the breakdown strength significantly compared to composites with micron scale fillers. Additionally, the voltage endurance of the nanocomposites is two orders of magnitude higher than that of the base polymer. The most significant difference between micron-scale and nano-scale fillers is the large interfacial area in nanocomposites. Because the interfacial region (interaction zone) is likely to be pivotal in controlling properties, this paper compares the behavior of nanoscale silica/ cross-linked low density polyethylene nanocomposites with several silica surface treatments. In addition to breakdown strength and voltage endurance, dielectric spectroscopy, absorption current measurements, and thermally stimulated current determinations (TSC) were performed to elucidate the role of the interface. It was found that a reduction in the mobility in nanocomposites as well as a change in the defect size may be key to explaining the improvement in the properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据