4.7 Article

Different topologies for a herding model of opinion

期刊

PHYSICAL REVIEW E
卷 75, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.066108

关键词

-

向作者/读者索取更多资源

Understanding how opinions spread through a community or how consensus emerges in noisy environments can have a significant impact on our comprehension of social relations among individuals. In this work a model for the dynamics of opinion formation is introduced. The model is based on a nonlinear interaction between opinion vectors of agents plus a stochastic variable to account for the effect of noise in the way the agents communicate. The dynamics presented is able to generate rich dynamical patterns of interacting groups or clusters of agents with the same opinion without a leader or centralized control. Our results show that by increasing the intensity of noise, the system goes from consensus to a disordered state. Depending on the number of competing opinions and the details of the network of interactions, the system displays a first- or a second-order transition. We compare the behavior of different topologies of interactions: one-dimensional chains, and annealed and complex networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据