4.7 Article

The role of electrostatics in saliva-induced emulsion flocculation

期刊

FOOD HYDROCOLLOIDS
卷 21, 期 4, 页码 596-606

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2006.07.004

关键词

emulsion; saliva; flocculation; depletion flocculation; electrostatic interactions

向作者/读者索取更多资源

Upon consumption food emulsions undergo different processes, including mixing with saliva. It has been shown that whole saliva induces emulsion flocculation [van Aken, G. A., Vingerhoeds, M. H., & de Hoog, E. H. A. (2005). Colloidal behaviour of food emulsions under oral conditions. In E. Dickinson (Eds.), Food colloids 2004: Interactions, microstructure and processing (pp. 356-366). Cambridge: The Royal Society of Chemistry; Vingerhoeds, M. H., Blijidenstein, T. B. J., Zoet, F. D., & van Aken, G. A. (2005). Emulsion flocculation induced by saliva and mucin. Food Hydrocolloids, 19, 915-922]. It was hypothesized that depletion flocculation was responsible for the observed flocculation. To further unravel the mechanism, we investigated the role of electrostatics on the behavior of emulsion/saliva mixtures. Emulsions stabilized with differently charged surfactants and proteins were mixed with saliva. Strongly negatively charged emulsions (SDS and Panodan) do not flocculate, likely because the electrostatic repulsion between the droplets overcomes the attractive depletion and van der Waals interactions. Neutral and weakly negatively charged emulsions (Tween 20 and beta-lactoglobulin pH 6.7) undergo flocculation, which is reversible upon dilution with water. This is probably due to depletion interactions, induced by large salivary protein like mucins, in combination with the van der Waals interaction and the sufficiently low electrostatic repulsion between the droplets. Positively charged emulsions (CTAB, lysozyme and beta-lactoglobulin pH 3.0) show irreversible flocculation leading to rapid phase separation. These findings point to a role of electrostatic attraction between the negatively charged proteins present in saliva and the positively charged surfaces of the emulsion droplets. The results indicate that the sign and the density of the charge on the surface of the droplets contribute significantly to the behavior of an emulsion when mixed with saliva. Depending on the charge, saliva-induced emulsion flocculation is driven by two different main mechanisms: depletion flocculation and electrostatic attraction. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据