4.7 Article Proceedings Paper

Surface-tension-driven biologically inspired water strider robots: Theory and experiments

期刊

IEEE TRANSACTIONS ON ROBOTICS
卷 23, 期 3, 页码 578-589

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2007.895075

关键词

biomimetic robotics; miniature robotics; piezoelectric actuator; surface tension

类别

向作者/读者索取更多资源

Recent biological studies on water strider insects revealed how they maintain stability and maneuver on the surface of water. While macroscale bodies use buoyancy, these very small insects use surface tension force to balance their weight on water. This paper proposes a biologically inspired miniature robot that utilizes the unique scaling advantage of these insects. The paper focuses on understanding the physics of the interaction between the insect and the surface of water and on designing a robot that mimics their key features. Hydrophobic Teflon coated wire legs optimized to take the most advantage of the surface tension force are used to support the weight of the 1-g robot. It is shown that twelve of these legs can support up to 9.3 g of payload. A T-shape actuation mechanism with three piezoelectric unimorph actuators is designed and studied to enable controlled locomotion. Static and dynamic properties of the robot are analyzed and compared with the experimental results. The tethered robot can successfully make both linear and rotational motions. Maximum forward speed is measured to be 3 cm/s, and the rotational speed is 0.5 rad/s. This robot proposes a new way of locomotion on water surface for future robots and devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据