4.7 Article

Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes

期刊

CLINICAL SCIENCE
卷 112, 期 11-12, 页码 599-606

出版社

PORTLAND PRESS LTD
DOI: 10.1042/CS20060323

关键词

antioxidant; comet assay; DNA damage; glucose tolerance; impaired glucose regulation; oxidative stress; Type 2 diabetes

向作者/读者索取更多资源

Previous studies have postulated the association between oxidative stress and Type 2 diabetes. Considering the long pre-diabetic period with IGR (impaired glucose regulation) and its high risk of developing diabetes, to test this hypothesis, we have investigated oxidative stress pathways and DNA damage in patients with IGR and newly diagnosed Type 2 diabetes. The study population consisted of 92 subjects with NGT (normal glucose tolerance), 78 patients with IGR and 113 patients with newly diagnosed diabetes. Plasma MDA (malondialdehyde) and TAC (total antioxidative capacity) status, erythrocyte GSH content and SOD (superoxide dismutase) activity were determined. A comet assay was employed to evaluate DNA damage. Compared with subjects with NGT, patients with IGR had reduced erythrocyte SOD activity. Patients with diabetes had a higher plasma MDA concentration, but a lower plasma TAC level and erythrocyte SOD activity, than the NGT group. Correlation analysis revealed a strong positive association between IR (insulin resistance) and MDA concentration, but negative correlations with TAC status and SOD activity. With respect to, beta-cell function, a positive association with TAC status and an inverse correlation with GSH respectively, were observed. The comet assay revealed slight DNA damage in patients with IGR, which was increased in patients with diabetes. Significant correlations were observed between DNA damage and hyperglycaemia, IR and beta-cell dysfunction. In conclusion, the results of the present study suggest that hyperglycaemia in an IGR state caused the predominance of oxidative stress over antioxidative defence systems, leading to oxidative DNA damage, which possibly contributed to pancreatic P-cell dysfunction, IR and more pronounced hyperglycaemia. This vicious circle finally induced the deterioration to diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据