4.5 Article

High content screen microscopy analysis of Ap1-42-induced neurite outgrowth reduction in rat primary cortical neurons:: Neuroprotective effects of α7 neuronal nicotinic acetylcholine receptor ligands

期刊

BRAIN RESEARCH
卷 1151, 期 -, 页码 227-235

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2007.03.051

关键词

Alzheimer's disease; high content screen (HCS); microscopy; amyloid-beta; neuroprotection; neurite outgrowth

向作者/读者索取更多资源

beta-Amyloid peptide 1-42 (A beta(1-42)) is generated from amyloid precursor protein (APP) and associated with neurodegeneration in Alzheimer's disease (AD). A beta(1-42) has been shown to be cytotoxic when incubated with cultured neurons. However, APP transgenic mice overexpressing A beta(1-42) do not show substantial loss of neurons, despite deficits in learning and memory. It is thus emerging that A beta(1-42)-induced memory deficits may involve subtler neuronal alternations leading to synaptic deficits, prior to frank neuro degeneration in AD brains. In this study, high content screen (HCS) microscopy, an advanced high-throughput cellular image processing and analysis technique, was utilized in establishing an in vitro model of A beta(1-42)-induced neurotoxicity utilizing rat neonatal primary cortical cells. Neurite outgrowth was found to be significantly reduced by A beta(1-42) (300 nM to 30 mu M), but not by the scrambled control peptide control, in a time- and concentration-dependent manner. In contrast, no reduction in the total number of neurons was observed. The A beta(1-42) induced reduction of neurite outgrowth was attenuated by the NMDA receptor antagonist memantine and the alpha 7 nicotinic acetylcholine receptor (nAChR) selective agonist PNU-282987. Interestingly, the a7 nAChR antagonist methyllycaconitine also significantly prevented reduction in A beta(1-42)-induced neurite outgrowth. The observed neuroprotective effects could arise either from interference of A beta(1-42) interactions with alpha 7 nAChRs or by modification of receptor-mediated signaling pathways. Our studies demonstrate that reduction of neurite outgrowth may serve as a model representing A beta(1-42)-mediated neuritic and synaptic toxicity, which, in combination of HCS, provides a high-throughput cell-based assay that can be used to evaluate compounds with neuroprotective properties in neurons. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据