4.7 Article

General relativistic flux modulations from disk instabilities in Sagittarius A

期刊

ASTROPHYSICAL JOURNAL
卷 662, 期 1, 页码 L15-L18

出版社

IOP PUBLISHING LTD
DOI: 10.1086/519278

关键词

accretion, accretion disks; black hole physics; Galaxy : center; instabilities; MHD; relativity

向作者/读者索取更多资源

Near-IR and ray flares have been detected from the supermassive black hole Sgr A* at the center of our Galaxy with a (quasi-) period of similar to 17-20 minutes, suggesting an emission region only a few Schwarzschild radii above the event horizon. The latest X-ray flare, detected with XMM-Newton, is notable for its detailed light curve, yielding not only the highest quality period thus far, but also important structure reflecting the geometry of the emitting region. Recent MHD simulations of Sgr A*' s disk have demonstrated the growth of a Rossby wave instability that enhances the accretion rate for several hours, possibly accounting for the observed flares. In this Letter, we carry out ray-tracing calculations in a Schwarzschild metric to determine as accurately as possible the light curve produced by general relativistic effects during such a disruption. We find that the Rossby wave-induced spiral pattern in the disk is an excellent fit to the data, implying a disk inclination angle of approximate to 77 degrees. Note, however, that if this association is correct, the observed period is not due to the underlying Keplerian motion but rather to the pattern speed. The favorable comparison between the observed and simulated light curves provides important additional evidence that the flares are produced in Sgr A*' s inner disk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据