4.7 Article

Gravitational wave bursts from the Galactic massive black hole

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2007.11758.x

关键词

black hole physics; gravitational waves; stellar dynamics; Galaxy : centre

向作者/读者索取更多资源

The Galactic massive black hole (MBH), with a mass of M-center dot = 3.6 x 10(6) M-circle dot, is the closest known MBH, at a distance of only 8 kpc. The proximity of this MBH makes it possible to observe gravitational waves (GWs) from stars with periapse in the observational frequency window of the Laser Interferometer Space Antenna (LISA). This is possible even if the orbit of the star is very eccentric, so that the orbital frequency is many orders of magnitude below the LISA frequency window, as suggested by Rubbo, Holley-Bockelmann & Finn (2006) Here we give an analytical estimate of the detection rate of such GW bursts. The burst rate is critically sensitive to the inner cut-off of the stellar density profile. Our model accounts for mass segregation and for the physics determining the inner radius of the cusp, such as stellar collisions, energy dissipation by GW emission and consequences of the finite number of stars. We find that stellar BHs have a burst rate of the order of 1 yr(-1), while the rate is the order of less than or similar to 0.1 yr(-1) for main-sequence stars and white dwarfs. These analytical estimates are supported by a series of Monte Carlo samplings of the expected distribution of stars around the Galactic MBH, which yield the full probability distribution for the rates. We estimate that no burst will be observable from the Virgo cluster.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据