4.5 Article

Bystin in human cancer cells: intracellular localization and function in ribosome biogenesis

期刊

BIOCHEMICAL JOURNAL
卷 404, 期 -, 页码 373-381

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20061597

关键词

bystin gene (BYSL); cancer; embryo implantation; nucleolar stress; ribosomal RNA processing; ribosome biogenesis

向作者/读者索取更多资源

Although bystin has been identified as a protein potentially involved in embryo implantation (a process unique to mammals) in humans, the bystin gene is evolutionarily conserved from yeast to humans. DNA microarray data indicates that bystin is overexpressed in human cancers, suggesting that it promotes cell growth. We undertook RT (reverse transcription)-PCR and immunoblotting, and confirmed that bystin mRNA and protein respectively are expressed in human cancer cell lines, including HeLa. Subcellular fractionation identified bystin protein as nuclear and cytoplasmic, and immunofluorescence showed that nuclear bystin localizes mainly in the nucleolus. Sucrose gradient ultracentrifugation of total cytoplasmic ribosomes revealed preferential association of bystin with the 40S subunit fractions. To analyse its function, bystin expression in cells was suppressed by RNAi (RNA interference). Pulse-chase analysis of ribosomal RNA processing suggested that bystin knockdown delays processing of 18S ribosomal RNA, a component of the 40S subunit. Furthermore, this knockdown significantly inhibited cell proliferation. Our findings suggest that bystin may promote cell proliferation by facilitating ribosome biogenesis, specifically in the production of the 40S subunit. Localization of bystin to the nucleolus, the site of ribosome biogenesis, was blocked by low concentrations of actinomycin D, a reagent that causes nucleolar stress. When bystin was transiently overexpressed in HeLa cells subjected to nucleolar stress, nuclear bystin was included in particles different from the nuclear stress granules induced by heat shock. In contrast, cytoplasmic bystin was barely affected by nucleolar stress. These results suggest that, while bystin may play multiple roles in mammalian cells, a conserved function is to facilitate ribosome biogenesis required for cell growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据