4.8 Article

Applying Label-Free Quantitation to Top Down Proteomics

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 10, 页码 4961-4968

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac500395k

关键词

-

资金

  1. NIH [R01 GM067193, P30 DA018310, HHSN261200800001E]
  2. NSF [ABI-1062432]

向作者/读者索取更多资源

With the prospect of resolving whole protein molecules into their myriad proteoforms on a proteomic scale, the question of their quantitative analysis in discovery mode comes to the fore. Here, we demonstrate a robust pipeline for the identification and stringent scoring of abundance changes of whole protein forms <30 lcDa in a complex system. The input is similar to 100-400 mu g of total protein for each biological replicate, and the outputs are graphical displays depicting statistical confidence metrics for each proteoform (i.e., a volcano plot and representations of the technical and biological variation). A key part of the pipeline is the hierarchical linear model that is tailored to the original design of the study. Here, we apply this new pipeline to measure the proteoform-level effects of deleting a histone deacetylase (rpd3) in S. cerevisiae. Over 100 proteoform changes were detected above a 5% false positive threshold in WT vs the Delta rpd3 mutant, including the validating observation of hyperacetylation of histone H4 and both H2B isoforms. Ultimately, this approach to label-free top down proteomics in discovery mode is a critical technical advance for testing the hypothesis that whole proteoforms can link more tightly to complex phenotypes in cell and disease biology than do peptides created in shotgun proteomics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据