4.8 Article

A Study of Calibrant Selection in Measurement of Carbohydrate and Peptide Ion-Neutral Collision Cross Sections by Traveling Wave Ion Mobility Spectrometry

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 22, 页码 11396-11402

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac503379e

关键词

-

资金

  1. University of Nebraska - Nebraska Tobacco Settlement Biomedical Research Development Fund
  2. University of Nebraska-Lincoln Undergraduate Creative Activities and Research Experiences (UCARE) program

向作者/读者索取更多资源

While ion-neutral collision cross sections (CCSs) can be directly calculated from drift tube ion mobility spectrometry (DTIMS) data, measurements made using the more recently introduced traveling wave ion mobility spectrometry (TWIMS) technique are usually calibrated using standards with known CCS. Presently, there remains some question regarding how selection of calibrants influences TWIMS CCS measurements. This is of particular concern when calibrants of the same molecular class (e.g., carbohydrate versus peptide) or charge state as the unknowns are unavailable. This report presents a study of calibrant ion influence on CCS determination via TWIMS. Drift times from TWIMS were calibrated to CCSs using either carbohydrates or peptides as standards. These calibrations were then applied to other carbohydrates and peptides with known CCSs, and the errors of the measurements were assessed. In addition, calibrations with standards having charge states either matched or mismatched with those of the target analytes were applied and evaluated for accuracy. The use of carbohydrates to calibrate peptide CCSs and vice versa was found to introduce errors only modestly larger than the inherent uncertainties of the measurements (on average, 1.0%). Charge state mismatching while the same molecular class of calibrant and analyte was maintained yielded larger errors (on average, 3.5%). Mismatching of both calibrant molecular class and charge state resulted in the largest errors (on average, 4.7%). These results suggest that matching of both molecular class and charge state is recommended when possible, while matching at least the charge state is strongly advisable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据