4.8 Article

Loss of bonded phase in reversed-phase liquid chromatography in acidic eluents and practical ways to improve column stability

期刊

ANALYTICAL CHEMISTRY
卷 79, 期 12, 页码 4681-4686

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac0703303

关键词

-

资金

  1. NIGMS NIH HHS [GM-54585] Funding Source: Medline

向作者/读者索取更多资源

Silica-based, reversed-phase liquid chromatographic (RPLC) stationary phases are very widely used to separate basic compounds in acidic eluents due to their high efficiency, good mechanical strength, and the versatile selectivity offered by different functional groups and the chemistry on the silica surface. However, the stability in acid of most silica-based stationary phases is poor, especially at elevated temperatures, due to hydrolysis of the siloxane bonds, which hold silanes on the silica substrate. This hydrolysis is commonly believed to be solely the result of catalysis by protons. However, we show that various metal cations (principally Fe3+/Fe2+, Ni2+, and Cr3+) released from acid corrosion of the stainless steel inlet frit greatly accelerate the hydrolysis of the siloxane bond. Furthermore, these metal cations, and not the high acidity per se, are mainly responsible for column instability. We show that removing the stainless steel inlet frit, or use of a titanium frit, greatly reduces or totally eliminates corrosion of the inlet frit and radically improves retention stability. The effects of various acids and types of organic modifier were also studied. These observations suggest a number of practical approaches that can significantly extend the lifetime of any RPLC stationary phase in acidic media at elevated temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据