4.8 Article

Concatemeric dsDNA-Templated Copper Nanoparticles Strategy with Improved Sensitivity and Stability Based on Rolling Circle Replication and Its Application in MicroRNA Detection

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 14, 页码 6976-6982

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac500955r

关键词

-

资金

  1. National Natural Science Foundation of China [21175039, 21190044, 21221003, 21322509, 21305035, 21305038]
  2. Hunan Province Science and Technology Project of China [2013FJ4042]
  3. Hunan Provincial Graduate Research and Innovation Projects [CX2013B139]

向作者/读者索取更多资源

DNA-templated copper nanoparticles (CuNPs) have emerged as promising fluorescent probes for biochemical assays, but the reported monomeric CuNPs remain problematic because of weak fluorescence and poor stability. To solve this problem, a novel concatemeric dsDNA-templated CuNPs (dsDNA-CuNPs) strategy was proposed by introducing the rolling circle replication (RCR) technique into CuNPs synthesis. In this strategy, a short oligonucleotide primer could trigger RCR and be further converted to a long concatemeric dsDNA scaffold through hybridization. After the addition of copper ions and ascorbate, concatemeric dsDNA-CuNPs could effectively form and emit intense fluorescence in the range of 500-650 nm under a 340 nrn excitation. In comparison with monomeric dsDNA-CuNPs, the sensitivity of concatemeric dsDNA-CuNPs was greatly improved with similar to 10 000 folds amplification. And their fluorescence signal was detected to reserve similar to 60% at 2.5 h after formation, revealing similar to 2 times enhanced stability. On the basis of these advantages, microRNA let-7d was selected as the model target to testify this strategy as a versatile assay platform. By directly using let-7d as the primer in RCR, the simple, low-cost, and selective microRNA detection was successfully achieved with a good linearity between 10 and 400 pM and a detection limit of 10 pM. The concatemeric dsDNA-CuNPs strategy might be widely adapted to various analytes that can directly or indirectly induce RCR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据