4.8 Article

Gadolinium Oxide Nanoparticles and Aptamer-Functionalized Silver Nanoclusters-Based Multimodal Molecular Imaging Nanoprobe for Optical/Magnetic Resonance Cancer Cell Imaging

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 22, 页码 11306-11311

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac503026d

关键词

-

资金

  1. National Natural Science Foundation of China [21305120]
  2. Natural Science Foundation of Jiangsu Province [BK20130211, BK2010178]
  3. Natural Science Fund for Colleges and Universities in Jiangsu Province [13KJB150036]

向作者/读者索取更多资源

Multimodal molecular imaging has attracted more and more interest from researchers due to its combination of the strengths of each imaging modality. The development of specific and multifunctional molecular imaging probes is the key for this method. In this study, we fabricated an optical/magnetic resonance (MR) dual-modality molecular imaging nanoprobe, polyethylene glycol-coated ultrasmall gadolinium oxide (PEG-Gd2O3)/aptamer-Ag nanoclusters (NCs), for tracking cancer cells. To achieve this aim, PEG-Gd2O3 nanoparticles (NPs) as magnetic resonance imaging (MRI) contrast agent and aptamer functionalized silver nanoclusters (aptamer-Ag NCs) as fluorescence reporter were first synthesized by a one-pot approach, respectively. They were then conjugated by the covalent coupling reaction between the carboxyl group on the surface of PEG-Gd2O3 NPs and amino group modified on the 5'-end of AS1411 aptamer. With a suitable ratio, the fluorescence intensity of aptamer-Ag NCs and MR signal of PEG-Gd2O3 nanoparticles could both be enhanced after the formation of PEG-Gd2O3/aptamer-Ag NCs nanoprobe, which favored their application for multimodal molecular imaging. With this nanoprobe, MCF-7 tumor cells could be specifically tracked by both fluorescence imaging and magnetic resonance imaging in vitro

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据