4.7 Article

Markov random field model for network-based analysis of genomic data

期刊

BIOINFORMATICS
卷 23, 期 12, 页码 1537-1544

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btm129

关键词

-

资金

  1. NIEHS NIH HHS [ES009911] Funding Source: Medline

向作者/读者索取更多资源

Motivation: A central problem in genomic research is the identification of genes and pathways involved in diseases and other biological processes. The genes identified or the univariate test statistics are often linked to known biological pathways through gene set enrichment analysis in order to identify the pathways involved. However, most of the procedures for identifying differentially expressed (DE) genes do not utilize the known pathway information in the phase of identifying such genes. In this article, we develop a Markov random field (MRF)-based method for identifying genes and subnetworks that are related to diseases. Such a procedure models the dependency of the DE patterns of genes on the networks using a local discrete MRF model. Results: Simulation studies indicated that the method is quite effective in identifying genes and subnetworks that are related to disease and has higher sensitivity and lower false discovery rates than the commonly used procedures that do not use the pathway structure information. Applications to two breast cancer microarray gene expression datasets identified several subnetworks on several of the KEGG transcriptional pathways that are related to breast cancer recurrence or survival due to breast cancer. Conclusions: The proposed MRF-based model efficiently utilizes the known pathway structures in identifying the DE genes and the subnetworks that might be related to phenotype. As more biological networks are identified and documented in databases, the proposed method should find more applications in identifying the subnetworks that are related to diseases and other biological processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据