4.8 Article

Single-Layer MnO2 Nanosheets Suppressed Fluorescence of 7-Hydroxycoumarin: Mechanistic Study and Application for Sensitive Sensing of Ascorbic Acid in Vivo

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 24, 页码 12206-12213

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac503215z

关键词

-

资金

  1. NSF of China [21321003, 21435007, 21210007, 91413117, 91132708]
  2. National Basic Research Program of China (973 programs) [2013CB933704]

向作者/读者索取更多资源

In this study, we systematically investigate the mechanism of single-layer MnO2 nanosheets suppressing fluorescence of 7-hydroxycoumarin and, based on this, demonstrate a new fluorescent method for in vivo sensing of ascorbic acid (AA) in rat brain. The mechanism for the fluorescence suppression is attributed to a combination of inner filter effect (IFE) and static quenching effect (SQE), which is different from those reported for the traditional two-dimensional nanosheets, and Forster resonant energy transfer (FRET) mechanism reported for MnO2 nanosheets. The combination of IFE and SQE leads to an exponential decay in fluorescence intensity of 7-hydroxycoumarin with increasing concentration of MnO2 nanosheets in solution. Such a property allows optimization of the concentration of MnO2 nanosheets in such a way that the addition of reductive analyte (e.g., AA) will to the greatest extent restore the MnO2 nanosheets-suppressed fluorescence of 7-hydroxycoumarin through the redox reaction between AA and MnO2 nanosheets. On the basis of this feature, we demonstrate a fluorescent method for in vivo sensing of AA in the cerebral systems with an improved sensitivity. Compared with the turn-on fluorescent method through first decreasing the fluorescence to the lowest level by adding concentrated MnO2 nanosheets, the method demonstrated here possesses a higher sensitivity, lower limit of detection, and wider linear range. Upon the use of ascorbate oxidase to achieve the selectivity for AA, the turn-on fluorescence method demonstrated here can be used for in vivo sensing of AA in a simple but reliable way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据