4.8 Article

Continuous and Simultaneous Electrochemical Measurements of Glucose, Lactate, and Ascorbate in Rat Brain Following Brain Ischemia

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 8, 页码 3895-3901

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac4042087

关键词

-

资金

  1. NSF of China [21321003, 21127901, 21210007, 91213305, 21375088]
  2. National Basic Research Program of China (973 programs) [2010CB33502]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA09020100]

向作者/读者索取更多资源

Developing new tools and technologies to enable recording the dynamic changes of multiple neurochemicals is the essence of better understanding of the molecular basis of brain functions. This study demonstrates a microfluidic chip-based online electrochemical system (OECS) for in vivo continuous and simultaneous monitoring of glucose, lactate, and ascorbate in rat brain. To fabricate the, microfluidic chip-based detecting system, a microfluidic chip.. with patterned channel is developed into an electrochemical flow cell by incorporating the chip with three surface-modified indium-tin oxide (ITO) electrodes as working electrodes, a Ag/AgCl wire as reference electrode, and a stainless steel tube as counter electrode. Selective detection of ascorbate is achieved by the use of single-walled carbon nanotubes (SWNTs) to largely facilitate the electrochemical oxidation of ascorbate, while a dehydrogenase-based biosensing mechanism with methylene green (MG) adsorbed onto SWNTs as an electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) is employed for biosensing of glucose and lactate. To avoid the crosstalk among three sensors, the sensor alignment is carefully designed with the SWNT-modified electrode in the upstream channel and paralleled glucose and lactate biosensors in the downstream channels. With the microfluidic chip-based electrochemical flow cell as the detector, an OECS is successfully established by directly integrating the microfluidic chip-based electrochemical flow cell with in vivo microdialysis. The OECS exhibits a good linear response toward glucose, lactate, and ascorbate with less crosstalk. This property, along with the high stability and selectivity, enables the OECS for continuously monitoring three species in rat brain following brain ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据