4.4 Article

Domain stability and metal-induced folding of calcium- and integrin-binding protein 1

期刊

BIOCHEMISTRY
卷 46, 期 24, 页码 7088-7098

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi700200z

关键词

-

向作者/读者索取更多资源

It is widely accepted that a pair of EF-hands is the functional unit of typical four EF-hand proteins such as calmodulin or troponin C. In this work we investigate the structure and stability of the four EF-hand domains in the related protein calcium- and integrin-binding protein 1 (CIB1) in the presence and absence of Mg2+ or Ca2+, to determine if similar EF-hand interactions occur. The backbone structure and flexibility of CIB1 were first studied by NMR spectroscopy, and these studies were complimented with steady-state fluorescence spectroscopy and chemical denaturation experiments using mutant CIB1 proteins having single Trp reporter groups in each of the four EF-hand domains EF-I (F34W), EF-II (F91W), EF-III (L128W), and EF-IV (F173W). We find that Mg2+-CIB1 adopts a well-folded structure similar to Ca2+-CIB1, except for some conformational heterogeneity in the C-terminal EF-IV domain. The structure of apo-CIB1 is significantly more dynamic, especially within EF-II, EF-III, and a partially unfolded EF-IV region, but the N-terminal EF-I region of apo-CIB1 has a well-ordered and more stable structure. The data reveal significant communication between the N- and C-lobes of CIB1, and show that transient intermediate conformations are formed along the unfolding pathway for each form of the protein. Collectively the data demonstrate that the communication between the paired EF-hand domains as well as between the N- and C-lobes of CIB1 is distinct from the ancestral proteins calmodulin and troponin C, which might be important for the unique function of CIB1 in numerous biological processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据